区块链百科

区块链技术是指通过去中心化和去信任的方式集体维护一个可靠数据库的技术方案。

广义上,区块链还指代基于区块链结构实现的分布式记账技术,包括分布式共识、隐私与安 全保护、点对点通信技术、网络协议、智能合约等。

狭义上,区块链是一种以区块为基本单位的链式数据结构,区块中利用数字摘要对之前的交易历史进行校验,适合分布式记账场景下防篡改和可扩展性的需求

区块链1.0是以比特币、莱特币为代表的加密货币,具有支付、流通等货币职能。

区块链2.0是以以太坊、瑞波币为代表的智能合约或理解为"可编程金融",是对金融领域的使用场景和流程进行梳理、优化的应用。

中本聪是比特币的发明人或发明组织,目前身份存疑。"中本聪"也可能仅仅是个化名。中本聪于2008年发表了一篇名为《比特币∶ 一种点对点式的电子现金系统》(Bitcoin∶A Peer-to-Peer Electronic Cash System)的论文,描述了一种被称为"比特币"的电子货币及其算法,被视为是区块链的第一个成功实践。

去中心化是区块链最基本的特征,指区块链不依赖于中心的管理节点,能够实现数据的分布式记录、存储和更新。

去信任表示用户不需要相信任何第三方。用户使用去信任的系统或技术处理交易时非常安全和顺畅,交易双方都可以安全地交易,而不需要依赖信任的第三方。

通过允许单个节点与其他节点直接交互,无需通过中介机构,从而实现整个系统像有组织的集体一样运作的系统。

一段时间内发生的事务处理以区块为单位进行存储,并以密码学算法将区块按时间先后顺序连接成链条的一种数据结构。

区块链通过区块数据结构存储了创世区块后的所有历史数据,区块链上的任——条数据皆可通过链式结构追溯其本源。

区块链系统是开放的,任何节点都能够拥有全网的总账本,除了数据直接相关各方的私有信息通过非对称加密技术被加密外,区块链的数据对所有节点公开,因此整个系统信息高度透明。

分布式账本的数字性质意味着区块链交易可以关联到计算逻辑,并且本质上是可编程的。因此,用户可以设置自动触发节点之间交易的算法和规则。

区块链的信息通过共识并添加至区块链后,就被所有节点共同记录,并通过密码学保证前后互相关联,篡改的难度与成本非常高。

密码学保证了数据隐私,即便数据泄露,也无法解析。

区块链采用基于协商一致的机制,使整个系统中的所有节点能在去信任的环境自由安全地交换数据、记录数据、更新数据,任何人为的干预都不起作用。

区块链系统是由其中所有具有维护功能的节点共同维护,所有节点都可以通过公开的接口查询区块链数据和开发相关应用

区块链系统是由其中所有具有维护功能的节点共同维护,所有节点都可以通过公开的接口查

分布式账本网络极其鲁棒,能够容忍部分节点的异常状态。

公有链的任何节点都是向任何人开放的,每个人都可以参与到这个区块链中的计算,而且任何人都可以下载获得完整区块链数据,即全部账本。

在某些区块链的应用场景下,开发者并不希望任何人都可以参与这个系统,因此建立一种不对外公开、只有被许可的节点才可以参与并且查看所有数据的私有区块链,私有链一般适用于特定机构的内部数据管理与审计。

联盟链是指参与每个节点的权限都完全对等,各节点在不需要完全互信的情况下就可以实现数据的可信交换,联盟链的各个节点通常有与之对应的实体机构组织,通过授权后才能加入或退出网络。联盟链是一种公司与公司、组织与组织之间达成联盟的模式。

通常区块链,尤其是公有链都有主网和测试网。主网是区块链社区公认的可信区块链网络,其交易信息被全体成员所认可。有效的区块在经过区块链网络的共识后会被追加到主网的区块账本中。

测试链是对应主网具有相同功能,但主要目的用于测试的区块链。由于测试链是为了在不破坏主链的情况下尝试新想法而建立的,只作为测试用途,因此测试链上的测试币不具备交易价值。比特币的测试链已经历多次重置,以阻止将其测试币用作交易、投机用途的行为。

侧链是主链外的另一个区块链,锚定主链中的某一个节点,通过主链上的计算力来维护侧链的真实性,实现公共区块链上价值与其他账簿上价值在多个区块链间的转移。最具代表性的实现有Blockstream。这种主链和侧链协同的区块链架构中的主链有时也被称为母链(Parent chain)。

区块链的应用层封装了各种应用场景和案例,类似于电脑操作系统上的应用程序、互联网浏览器上的门户网站、搜寻引擎、电子商城或是手机端上的APP,将区块链技术应用部署在如以太坊、EOS、QTUM 上并在现实生活场景中落地。未来的可编程金融和可编程社会也将会是搭建在应用层上。 激励层、合约层和应用层不是每个区块链应用的必要因素,一些区块链应用并不完整包含此三层结构。

合约层主要包括各种脚本、代码、算法机制及智能合约,是区块链可编程的基础。将代码嵌入区块链或是令牌中,实现可以自定义的智能合约,并在达到某个确定的约束条件的情况下,无需经由第三方就能够自动执行,是区块链去信任的基础。

激励层主要包括经济激励的发行制度和分配制度,其功能是提供一定的激励措施,鼓励节点参与区块链中安全验证工作,并将经济因素纳入到区块链技术体系中,激励遵守规则参与记账的节点,并惩罚不遵守规则的节点。

共识层主要包含共识算法以及共识机制,能让高度分散的节点在去中心化的区块链网络中高效地针对区块数据的有效性达成共识,是区块链的核心技术之一,也是区块链社群的治理机制。目前至少有数十种共识机制算法,包含工作量证明、权益证明、权益授权证明、燃烧证明、重要性证明等。数据层、网络层、共识层是构建区块链技术的必要元素,缺少任何一层都不能称之为真正意义上的区块链技术。

网络层主要通过P2P 技术实现分布式网络的机制,网络层包括P2P 组网机制、数据传播机制和数据验证机制,因此区块链本质上是一个P2P 的网络,具备自动组网的机制,节点之间通过维护一个共同的区块链结构来保持通信。

数据层主要描述区块链的物理形式,是区块链上从创世区块起始的链式结构,包含了区块链的区块数据、链式结构以及区块上的随机数、时间戳、公私钥数据等,是整个区块链技术中最底层的数据结构。

区块是在区块链网络上承载交易数据的数据包,是一种被标记上时间戳和之前一个区块的哈希值的数据结构,区块经过网络的共识机制验证并确认区块中的交易。

父块是指区块的前一个区块,区块链通过在区块头记录区块以及父块的哈希值来在时间上排序。

记录当前区块的元信息,包含当前版本号、上一区块的哈希值、时间戳、随机数、Merkle Root 的哈希值等数据。此外,区块体的数据记录通过Merkle Tree 的哈希过程生成唯一的Merkle Root 记录于区块头。

记录一定时间内所生成的详细数据,包括当前区块经过验证的、区块创建过程中生成的所有交易记录或是其他信息,可以理解为账本的一种表现形式。

哈希值通常用一个短的随机字母和数字组成的字符串来代表,是一组任意长度的输入信息通过哈希算法得到的"数据指纹"。因为计算机在底层机器码是采用二进制的模式,因此通过哈希算法得到的任意长度的二进制值映射为较短的固定长度的二进制值,即哈希值。此外,哈希值是一段数据唯一且极其紧凑的数值表示形式,如果通过哈希一段明文得到哈希值,哪怕只更改该段明文中的任意一个字母,随后得到的哈希值都将不同。

时间戳从区块链生成的那一刻起就存在于区块之中,是用于标识交易时间的字符序列,具备唯一性,时间戳用以记录并表明存在的、完整的、可验证的数据,是每一次交易记录的认证。

梅克尔树(又叫哈希树)是一种二叉树,是一种高效和安全的组织数据的方法,被用来快速查询验证特定交易是否存在,由一个根节点、一组中间节点和一组叶节点组成。它使用哈希算法将大量的书面信息转换成一串独立的字母或数字。最底层的叶节点包含存储数据或其哈希值,每个中间节点是它的两个子节点内容的哈希值,根节点也是由它的两个子节点内容的哈希值组成。

区块链的每个区块,都是用来承载某个时间段内的数据的,每个区块通过时间的先后顺序,使用密码学技术将其串联起来,形成一个完整的分布式数据库,区块容量代表了一个区块能容纳多少数据的能力。

Nonce 是指"只使用一次的随机数",在挖矿中是一种用于挖掘加密货币的自动生成的、毫无意义的随机数,在解决数学难题的问题中被使用一次之后,如果不能解决该难题则该随机数就会被拒绝,而一个新的Nonce 也会被测试出来并且直到问题解决,当问题解决时矿工就会得到加密货币作为奖励。在区块结构中,Nonce是基于工作量证明所设计的随机数字,通过难度调整来增加或减少其计算时间;在信息安全中,Nonce 是一个在加密通信只能使用一次的数字;在认证协议中,Nonce是一个随机或伪随机数,以避免重放攻击。

未花费的交易输出是一个包含交易数据和执行代码的数据结构,可以理解为收到的但尚未花费的加密货币清单。比特币和其他加密货币在其区块链技术中使用 UTXO,以验证一个人是否拥有未使用的加密货币可用于支出。

指在区块链或去中心化网络中不向前兼容的分叉,硬分叉对加密货币使用的技术进行永久更改,这种变化使得所有的新数据块与原来的块不同,旧版本不会接受新版本创建的区块,要实现硬分叉所有用户都需要切换到新版本协议上。如果新的硬分叉失败,所有的用户将回到原始数据块。

指在区块链或去中心化网络中向前兼容的分叉。向前兼容意味着,当新共识规则发布后,在去中心化架构中节点不一定要升级到新的共识规则,因为软分叉的新规则仍旧符合老的规则,所以未升级的节点仍旧能接受新的规则。

在区块链中,由矿工挖出区块并将其链接到主链上,一般来讲同一时间内只产生一个区块,如果发生同一时间内有两个区块同时被生成的情况,就会在全网中出现两个长度相同、区块里的交易信息相同但矿工签名不同或者交易排序不同的区块链,这样的情况叫做分叉。

既区块链并不通过代币进行价值交换,一般出现在不需要在节点之间转移价值并且仅在不同的已被信任方之间共享数据的情况下,如私有链。

区块链中的第一个区块被称为"创世"区块。创世区块一般用于初始化,不带有交易信息。

一个区块的高度是指在区块链中它和创世区块之间的块数。

通过幽灵协议,区块可以包含不只是他们父块的哈希值,也包含其父块的父块的其他子块(被称为叔块)的陈腐区块的哈希值,这确保了陈腐区块仍然有助于区块链的安全性,并能够获得一定比例的区块奖励,减少了大型矿工在区块链上的中心化倾向问题。

孤块是一个被遗弃的数据块。因为很多节点都在维护区块链并同时创建多个区块,但是一次只能有一个被继续继承,而其它被遗弃的数据块就是孤块。

是父块的父块的"其他"子块,或更一般的说是祖先的其他子块,但不是自己的祖先,如果A是B 的一个叔块,那B是A的侄块。

链是由区块按照发生的时间顺序,通过区块的哈希值串联而成,是区块交易记录及状态变化的日志记录。

区块链系统从功能角度讲,是一个价值交换网络,链下是指不存储于区块链上的数据。

跨链技术是实现区块链之间互联互通的技术,若对标互联网则可理解为"去中心化网络的结合",区块链技术的特性使得跨链技术的落地,以及对于链外信息的获取都非常困难,早期跨链技术以 Interledger Protocal 和 BTC Relay为代表,更多是关注资产的转移;现有跨链技术以Aion、Kyber Network、 Bletchley、Polkadot、Cosmos 主要着重的是跨链基础设施。"如果说共识机制是区块链的灵魂核心,那么对于区块链特别是联盟链及私链来看,跨链技术就是实现价值网络的关键,它是把联盟链从分散单独的孤岛中拯救出来的良药,是区块链向外拓展和连接的桥梁。"--《连接不同区块链的跨链技术介绍》。

侧链协议是一种实现双向锚定(Two-way Peg)的协议,通过侧链协议实现资产在主链和其它链之间互相转换,或是以独立的、隔离系统的形式,降低核心区块链上发生交易的次数。

它将实现比特币和其他数字资产在多个区块链间的转移,这就意味着用户们在使用他们已有资产的情况下,可以访问新的加密货币系统。

哈希时间锁定合约包含哈希锁定(Hashlock)以及时间锁定(Timelock)两个部分,哈希时间锁定合约最典型的代表就是比特币的闪电网络,闪电网络提供一个可扩展的微支付通,用以提升链外的交易处理能力,使用哈希锁定将发起方的交易代币进行锁定,并通过时间锁定让接收方在某个约定的时刻前生成支付的密码学证明,并与先前约定的哈希值一致,则可完成交易。

中继技术是通过在两个链中加入一个数据结构,使得两个链可以通过该数据结构进行数据交互,并通过在一个链上调用数据结构的 API,实现监听并验证另一个链上的交易,而若该数据结构是一个链式结构,则具备侧链的形式并称作中继链。

见证人模式是一种中心化的结构,通过选定一批见证人并在见证人之间采用拜占庭容错结构,监听目标链上的事件和状态并签名进行资产的转移,如Ripple的 Interledger Protocal的早期版本。

原子互换是一种正在开发中的去中心化、无需第三方的新技术,允许在不同类型的数字资产之间实现无需信任的点对点交易,任何一方在瞬间完成的点对点交易中都遵守协议,且之后若有一方退出,资金会在规定的时间返回各方账户。

账户是在总账中的一份记录,通过地址在总账中索引,总账包含有关该账户的状态的完整的数据。在一个加密货币系统中,该数据则包含了加密货币余额、未完成的交易订单等情况。

每个账号的交易计数,通过账户随机数可以防止重放攻击。例如,A给B 发送20个币,B重放一遍又一遍,直到抽干A 的账户余额。

地址通过一系列密码算法推算形成,本质上是属于特定用户的公钥的哈希值,地址用于在网络上交易时接收和发送数据,由一连串字母和数字的字符串组成,但也可以表示为可扫描的二维码。

虚拟地址是一串公开可用的字母和数字,并且以一组定制的字母和数字开始。虚拟地址允许接收,保存和发送加密货币。

虚荣地址是指通过哈希函数计算随机产生特定的字符串,由于无法通过逆向计算哈希函数,因此只能不停地重复生成密钥,直到密钥中包含希望出现的字符串,而这样的密钥地址称为虚荣地址。

虚荣池是一个虚荣地址生成池,这种服务允许用户将他们的虚拟地址生成需求外包给第三方矿工,而不用担心会危及他们的安全。

虚荣地址挖矿即通过计算机重复产生基于哈希函数的秘钥地址,直到通过大量的计算得到密钥中出现所期待的字符串的过程,其通过大量并行计算寻找特定字符串与加密货币挖矿寻找特定数学解在某种程度上相似。

在区块链中一笔交易是一个数字记录,通过区块链网络将交易数据在全网范围中广播,通告加密货币的所有权发生转移,并通过共识机制在全网中进行确认及验证,使得该笔交易变得不可逆并防止篡改。在普通货币里主要的交易类型是发送的货币单位或代币给别人;而在如域名注册等其他系统中,作出并完成报价、订立合约的行为也是有效的交易类型。

即通过法定货币购买,出售或交易数字资产。

即通过加密货币购买,出售或交易数字资产。

可互换是指两种以上商品或是资产可以互换交易,可互换性是指两种以上商品或是资产拥有相互替代的性质。也就是说,在普通交易不影响市场价值的前提下,两种商品具备相互流通的功能,如币币交易中的BTC、ETH、 USDT 等主流加密货币通常用于其他加密货币的计价,因此与其他货币在具备可互换性。

验证是对于交易的一种确认,通过区块链网络中节点的共识机制,将交易数据在区块链网络广播并由其他节点确认,即验证该笔交易的合法性。

污点指一个账户中被标注为来自于不被信任的渠道的加密货币的百分比。污点常用来测量使用者的数字钱包中有多少加密货币与失窃货币、假币或者与负面、非法活动相关,由此产生的新数据也会继承源数据"是否被污染"的属性。

重放攻击在区块链中不同于传统意义,是指"一条链上的交易在另一条链上也往往是合法的",即在链分叉时,地址和私钥生产的算法相同,交易格式也完全相同,因此在一条链上的交易在另一条链上很可能是完全合法的,也即你在分叉区块中进行的一笔交易很可能在分叉链中皆为合法,即为"重放"。

交易确认表示该笔交易被区块链网络所记录并确认,当交易发生时,记录该笔交易的区块将进行第一次确认,并在该区块之后的链上的每一个区块进行再次确认;当确认数达到六个及以上时,通常认为这笔交易比较安全并难以篡改。

零确认交易是指交易卖家不等待该笔交易被区块链网络节点确认,即交付出售的东西。零确认交易是一种信任的标志,卖方必须相信买方在该笔交易被区块链中的其他节点记录前不会再尝试将其持有的加密货币再花在其他地方。

交易数据处于未确认的状态,即交易数据在全网广播后,节点会不断从交易池中选择交易数据进行记录(一般根据交易手续费进行排序),并试图将数据记录在区块上,而未确认交易是指该笔交易尚未被记录在区块链上。

比特币交易的拥堵情况随着并发交易数量的增加而增加,许多矿池会对内存池中的交易按照手续费高低排列,优先处理高手续交易,其理想情况是高手续费交易先解决,低手续费交易后解决。然而在实际的市场应用中,由于新的交易不断出现,低手续费交易可能永远得不到处理,长时间甚至永久处于0 确认状态。

用少量的加密货币在区块链网络中进行购买、出售等交易行为,一般认为当交易费用高于1/3交易价值时,即可称作"Dust"或尘埃交易,目前而言,尘埃交易是指交易价值低于546 satoshis 比特币(即0.00000546 BTC)的交易。

将交易信息在区块链网络中"广播",并由节点验证即确认的过程。

保证金交易是通过使用保证金采取杠杆交易的交易方式,保证金交易允许投资者在支付杠杆资金利息费用的同时控制并使用比自己实际拥有更多的资产,是一种高风险的市场操作行为,因此在金融领域中已将其纳入监管范围进行穿透监管。

交易费用,亦称为"区块链费用"、"矿工费",是在用户进行加密货币交易时收取的交易费用,用以奖励矿工对比特币网络的维护。由于矿工通过向网络提供算力以验证发送和接收的数据是否正确,并将这些信息存储在被称为区块链的记录中,由于这些交易每分钟发生很多次,因此较高的费用会激励这些人先验证并记录交易。

挖矿是指利用电脑硬件计算、记录和验证被称为区块链的数字记录信息的过程。矿工通过挖矿求解数学难题从而获得创建新区块的记账权以及区块的比特币奖励,由于其工作原理与矿物开采十分相似,故称之为挖矿。目前最常见的方式是通过PoW 工作量证明共识机制,第一个解决复杂数学问题的计算机将得到一个新的可记录区块链上信息的块,同时得到新的比特币。

在区块链网络中,矿工是指通过不断进行哈希运算来求解数学难题并产生工作量证明的各网络节点,通过算力来验证、确认交易并防止双重支付。

矿池是一个完全节点,矿池是通过一种将少量算力合并联合运作的方法,整合区块链网络中的零散算力,并在所有成员中共享奖励。在全网算力提升到了一定程度后,单个设备难以在比特币网络上获取比特币网络提供的区块奖励,变成了纯粹0 和1的概率事件,而通过加入矿池集合网络中较大比例的算力,远比单独获取区块奖励的几率更大。

矿场与矿池是两个区分概念,矿场是指地理上集中的矿机分布形式。基于比特币全网的算力水平不断上升,单个设备难以获得比特币的区块奖励,因此通过大规模挖矿、商业化运作的模式,将大量的矿机集中到挖矿成本较低的地方进行的规模化挖矿。矿场的主要成本来自于硬件成本以及电力成本。

目标值是指挖矿时,数学难题的哈希值的阈值。矿工只能通过在该目标值范围内求得正确的随机数以得到该区块的记账权及区块奖励。当全网算力提升时,该目标值就会根据难度调整而降低并增加求数学解的难度。

挖矿难度是衡量将信息记录到被称为区块链的数字记录上的难度。在工作量证明中,为了使得区块产生的速度(也即数学难题的解答速度)维持在大约每十分钟一个,产生的新区块的挖矿难度会定期调整,每隔2016个区块(即两周),挖矿难度就会被重新计算,整个网络会通过调整"难度"这个变量来控制生成工作量证明所需要的计算力。

瞬时挖矿指一种新的加密货币在发行后很短的时间内,能很容易被获得的过程。瞬时挖矿的目的是在早期积累大量可用的货币供应,以在后期出售获取高利润。

使整个网络的计算力大致每10 分钟产生一个区块所需要的难度数值即为难度目标。难度目标由区块链网路根据过去两周的计算结果,自动重新计算未来两周的难度目标。难度目标由区块中的SHA 256 Hash 值所决定,通过控制区块标头(Block Header)SHA256 Hash 值应恰好落在可控范围目标区间之内来增加或减少难度目标。

微支付通道是通过 Hashed Timelock Contract 来实现的,中文意思是"哈希的带时钟的合约"。这个其实就是限时转账。理解起来也很简单,通过智能合约,双方约定转账方先冻结一笔钱,并提供一个哈希值,如果在一定时间内有人能提出一个字符串,使得它哈希后的值跟已知值匹配(实际上意味着转账方授权了接收方来提现),则这笔钱转给接收方。

矿机是一种用于加密货币挖矿的计算机,一般配备专业的挖矿芯片,因而耗电量较大。矿机是用来记录被称为区块链的数字记录信息的计算机,通过在区块链网络上的共识机制(一般指PoW)争夺区块链的记账权,得到求解区块的加密货币奖励以及交易费用,因为挖矿通常需要大量的计算机能力,所以这种专用的计算机是为了挖矿而设计的。
矿机一般可分为∶ ASIC矿机、GPU 矿机、CDN矿机、云矿机。

中央处理器是计算机的主要设备之一,其功能是解释计算机指令以及处理计算机软件中的数据,与内部存储器、输入及输出设备成为现代电脑的三大部件;CPU 作为通用性计算单元,结构中包含分支预测单元、寄存单元等对于挖矿并无帮助的模块,同时CPU 并不擅长并行运算(即重复性的工作),因此并不适合用作挖矿。

图形处理单元,通常称为显卡,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。因显卡含有较多的移位寄存器及支持更大量的并行运算,相比CPU 会更适用于某些数字货币的挖矿。

专用集成电路(ASIC)是一种为专门目的而设计的集成电路,是指应特定用户要求和特定电子系统的需要而设计、制造的集成电路。在加密货币的应用上,通过牺牲通用计算的能力换取执行特定任务的高效率,ASIC 被使用来帮助记录区块链上的交易,在挖矿能力方面远优于 GPU。

算力是计算机能够完成一个数学程序的速度,譬如接收任何一组信息,并将其转换成字母和一定长度的数字的速度就称为算力。在比特币"挖矿"中,对于数学难题的求解需要找到相应的数学解,而对于任意一个给定范围内的Hash值,其求解只能通过自动生成的随机数,因此一个挖矿机每秒能做多少次求解过程就是算力的代表,其单位为Hash/s。

区块奖励是矿工通过算力解决相关数学难题并创建新区块后所获得的奖励,区块奖励根据不同加密货币而有所不同。以比特币为例,比特币以一个确定的但不断衰减的速率被挖出来,大约每十分钟产生一个新区块,每一个新区块都伴随着一定数量从无到有的全新比特币;每开采210000 个区块其奖励减半,其周期为四年。从比特币发明最初的50个比特币/区块到2016 年后的12.5 个比特币/区块,并会在2040 年达到总数接近2100万个比特币,在那之后新的区块不再包含比特币奖励,矿工的收益全部来自交易费。

奖励减半是指开采比特币的回报以一个确定的但不断衰减的机制在每210000 个区块被挖出来后减半。在加密货币中,挖矿是用来记录和验证被称为区块的数字记录的信息。每当解决了一个数学难题后,就会创建一个新区块并将其添加到区块链中,新的加密货币奖励将会在区块链网络确认后交给解决该数学难题的计算机。

非对称加密是一种保证区块链安全的基础技术。该技术含有两个密钥∶公钥和私钥,首先,系统按照某种密钥生成算法,将输入经过计算得出私钥,然后,采用另一个算法根据私钥生成公钥,公钥的生成过程不可逆。由于在现有的计算能力条件下难以通过公钥来穷举出私钥(即计算上不可行),因此可以认为是数据是安全的,从而能够保证区块链的数据安全。

加密算法是一个函数,也可以视为是一把钥匙,通过使用一个加密钥匙,将原来的明文文件或数据转化成一串不可读的密文代码。加密流程是不可逆的,只有持有对应的解密钥匙才能将该加密信息解密成可阅读的明文。加密使得私密数据可以在低风险的情况下,通过公共网络进行传输,并保护数据不被第三方窃取、阅读。

加密是一系列使信息不可读的过程,它能使信息加密也能使信息加密后能够再次可读,在加密货币中使用的密码也使用由字母和数字组成的密钥,该密钥必须用于解密密码。

密码学是数学和计算机科学的分支,同时其原理大量涉及信息论。密码学不只关注信息保密问题,还同时涉及信息完整性验证(消息验证码)、信息发布的不可抵赖性(数字签名)、以及在分布式计算中产生的来源于内部和外部的攻击的所有信息安全问题。

公钥与私钥是通过一种算法得到的一个密钥对,公钥是密钥对中公开的部分,私钥则是非公开的部分,公钥通常用于加密会话密钥、验证数字签名,或加密可以用相应的私钥解密的数据。

公钥与私钥是通过一种算法得到的一个密钥对,公钥是密钥对中公开的部分,私钥则是非公开的部分,私钥是指与一个地址(地址是与私钥相对应的公钥的哈希值)相关联的一把密钥,是只有你自己才知道的一串字符,可用来操作账户里的加密货币。

密钥是用于加密或解密信息的一段参数,在非对称加密系统中,是通过利用公钥(账户)与私钥(密码)的配合而实现的。

钥匙是使隐藏的、不可读的信息可读的一串秘密字母和数字。

在密码学中,明文是指传送方想要接收方获得的可读信息。明文经过加密所产生的信息被称为密文,而密文经过解密而还原得来的信息被称为明文。

在密码学中,密文是明文经过加密算法所产生的。因为密文是一种除非使用恰当的算法进行解密,否则人类或计算机是不可以直接阅读理解的加密形态,可以理解为被加密的信息。

数字签名(又称公钥数字签名、电子签名)是一种类似写在纸上的签名,但是使用了公钥加密领域的技术实现,用于鉴别数字信息的方法,在网络上可以使用数字签名来进行身份确认。数字签名是一个独一无二的数值,若公钥能通过验证,那我们就能确定对应的公钥的正确性,数字签名兼具可确认性和不可否认性。

数字证书是区块链中标识各个节点的身份信息的一串数字,用以证明公钥的归属以及内容信息的合法性,在区块链的非对称加密中,一旦通过中间人攻击将公钥替换后将会破坏区块链的安全体系,因此通过共识机制建立互相承认的数字证书机制,在不需要第三方的情况下识别数据的合法性。

多重签名意味着在交易发生之前需要多个签名或批准。多重签名会增加加密货币的安全性,这样一个人就不能在未经他人同意的情况下把所有的数字货币都拿走。

因签名中参数Ci(i=1,2,.n)根据一定的规则首尾相接组成环状而得名。其实就是实际的签名者用其他可能签字者的公钥产生一个带有断口的环,然后用私钥将断口连成一个完整的环。任何验证人利用环成员的公钥都可以验证一个环签名是否由某个可能的签名人生成。

RSA 公开密钥密码体制是使用不同的加密密钥与解密密钥,是一种"由已知加密密钥推导出解密密钥在计算上是不可行的"密码体制。它通常是先生成一对RSA 密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册。

椭圆加密算法是一种公钥加密体制,最初由Koblitz 和 Miller 两人于1985 年提出,其数学基础是利用椭圆曲线上的有理点构成Abel加法群上椭圆离散对数的计算困难性。

同态加密是一种特殊的加密方法,允许对密文根据特定的代数运算方式进行处理后得到的仍然是加密的结果,将其解密所得到的结果与对明文进行同样的运算结果是一样的。即"对密文直接进行处理"与"对明文进行处理后并加密"其结果是一样的,这项技术可以在加密的数据中进行诸如检索、比较等操作而无需对数据先进行解密,从根本上解决将数据委托给第三方时的保密问题。

公钥加密是一种特殊的加密手段,具有在同一时间生成两个密钥的处理(私钥和公钥),每一个私钥都有一个相对应的公钥,从公钥不能推算出私钥,并且被用其中一个密钥加密了的数据,可以被另外一个相对应的密钥解密。这套系统使得节点可以先在网络中广播一个公钥给所有节点,然后所有节点就可以发送加密后的信息给该节点,而不需要预先交换密钥。

哈希又称作"散列",是一种数学计算机程序,它接收任何一组任意长度的输入信息,通过哈希算法变换成固定长度的数据指纹输出形式,如字母和数字的组合,该输出就是"哈希值"。哈希使存储和查找信息速度更快,因为哈希值通常更短所以更容易被找到。同时哈希能够对信息进行加密,一个好的哈希函数在输入域中很少出现哈希冲突,哈希一个特定文档的结果总是一样的,但找到具有相同哈希值的两个文件在计算上是计算上不可行的。

SHA 256 是SHA 系列算法之一,由美国国安局设计、美国国家标准与技术研究院发布的一套哈希算法,由于其摘要长度为256bits,故称SHA256。SHA 256 是保护数字信息的最安全的方法之一。

证明者和验证者之间进行交互,证明者能够在不向验证者提供任何有用的信息的情况下,使验证者相信某个论断是正确的。

密码算法依赖的原理是当前计算不可行的数学问题,而"计算不可行"是一个在时间及空间上相对而言的概念,计算上不可行即表示一个程序是可处理的但是需要一个长得不切实际的时间(如几十亿年)来处理的步骤。通常认为2的80次方个计算步骤是计算上不可行的下限。

暴力破解法又名穷举法,是一种密码分析的方法,通过逐个推算猜测每一个可能解锁安全系统的密钥来获取信息的方法。

传统上的分布式存储本质上是一个中心化的系统,是将数据分散存储在多台独立的设备上,采用可扩展的系统结构、利用多台存储服务器分担存储负荷、利用位置服务器定位存储信息。而基于P2P 网络的分布式存储是区块链的核心技术,是将数据存储于区块上并通过开放节点的存储空间建立的一种分布式数据库,解决传统分布式存储的问题。

P2P存储是一种不存在中心化控制机制的存储技术。P2P存储通过开放节点的存储空间,以提高网络的运作效率,解决传统分布式存储的服务器瓶颈、带宽而带来的访问不便等问题。

分布式是通过区块链的P2P技术实现,分布式是描述一个计算机系统具有在多台计算机上同时运行和维护的完整副本,没有任何人或组织来控制这个系统。

分布式账本是指一种在网络成员之间共享、复制和同步的数据库,分布式账本在区块链中是一个通过共识机制建立的数字记录,区块链网络中的参与者可以获得一个唯一、真实账本的副本,因此难以对分布式账本进行篡改。更改记录的方式非常困难,技术非常安全。

账本是指包括区块链的数据结构、所有的交易信息和当前状态的数字记录。

全节点是是拥有完整区块链账本的节点,全节点需要占用内存同步所有的区块链数据,能够独立校验区块链上的所有交易并实时更新数据,主要负责区块链的交易的广播和验证。

节点是区块链分布式系统中的网络节点,是通过网络连接的服务器、计算机、电话等,针对不同性质的区块链,成为节点的方式也会有所不同。以比特币为例,参与交易或挖矿即构成一个节点。

由于点对点网络下存在较高的网络延迟,各个节点所观察到的事务先后顺序不可能完全一致。因此区块链系统需要设计一种机制对在差不多时间内发生的事务的先后顺序进行共识。这种对一个时间窗口内的事务的先后顺序达成共识的算法被称为"共识机制"。

工作量证明简单理解就是一份证明,用来确认节点做过一定量的工作。监测工作的整个过程通常是极为低效的,而通过对工作的结果进行认证来证明完成了相应的工作量,则是一种非常高效的方式。比特币在区块的生成过程中使用了Pow机制,要得到合理的随机数求解数学难题需要经过大量尝试计算,通过查看记录和验证区块链信息的证明,就能知道是否完成了指定难度系数的工作量。

Pos也称权益证明机制,类似于把资产存在银行里,银行会通过你持有数字资产的数量和时间给你分配相应的收益,采用Pos机制的加密货币资产,系统会根据节点的持币数量和时间的乘积(币天数)给节点分配相应的权益。

DPoS是一种类似董事会的授权共识机制,该机制让每一个持币人对整个系统的节点进行投票,决定哪些节点可以被信任并代理他们进行验证和记账,同时生成少量的相应奖励。DPoS大幅提高区块链的处理能力,并降低区块链的维护成本,从而使交易速度接近于中心化的结算系统。

燃烧证明是一种投资于全新的加密货币的方法∶为了获得一种新的货币,你必须"烧掉"(摧毁)另一种货币,比如比特币。从理论上讲,这将使每一种新的加密货币价值相当于被摧毁的币的价值,但实际上你不能真的摧毁加密货币,系统需要你把它送到一个会减少它的总供应量的地方。

开发者证明是一个真实的、活的软件开发人员创建了一种加密货币的证据。它用于启动新的加密货币,以防止匿名开发人员在不提供可行的加密货币的情况下收集和窃取资金。

重要性证明是根据交易量、活跃度等维度而不仅仅是根据工作量和币的数量来决定区块链的记账权力。

瑞波共识算法使一组节点能够基于特殊节点列表达成共识,初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由51%的该俱乐部会员投票通过。共识遵循核心成员51%权力规则,外部人员则没有影响力。

Ta POS 为股东们提供了一个长效机制来直接批准他们的代表的行为,平均而言,51%的股东在6 个月内会直接确认每个区块,取决于活跃流通的股份所占的比例,差不多10%的股东可以在几天内确认区块链,这种方式直接确认保障了网络的长期安全,并使所有的攻击尝试变得极度清晰易见。

验证池机制是基于传统的分布式一致性技术和数据验证机制的结合,它使得在成熟的分布式一致性算法(Pasox、Raft)基础上,不需要代币也能实现秒级共识验证。

所有的节点必须定期更新彼此之间的不断复制的状况,通过专门的槽位来识别每一个更新。当所有节点更新了他们的分类账并放映的值相同时,就可达成共识,会将协商一致的声明具体化并发布至它们的分类账副本去。

51%攻击,是指利用比特币以算力作为竞争条件的特点,凭借算力优势篡改或者撤销自己的付款交易。如果有人掌握了50%以上的算力,他能够比其他人更快地找到开采区块需要的那个随机数,因此他能够比其他人更快地创建区块。

双重支付是一个故意的分叉,是指具有大量计算能力的节点发送一个交易请求并购买资产,在收到资产后又做出另外一个交易将相同量的币发给自己。攻击者通过创造一个分叉区块,将原始交易及伪造交易放在该区块上并基于该分叉上开始挖矿。如果攻击者有超过50%的计算能力,双重花费最终可以在保证在任何区块深度上成功;如果低于50%则有部分可能性成功。

拜占庭将军问题是指"在存在消息丢失的不可靠信道上试图通过消息传递的方式达到一致性是不可能的"。因此在系统中存在除了消息延迟或不可送达的故障以外的错误,包括消息被篡改、节点不按照协议进行处理等,将会潜在地会对系统造成针对性的破坏。

联邦拜占庭协议的主要特性是去中心化和任意行为容错,通过分布式的方法,达到法定人数或者节点足够的群体能达成共识,每一个节点不需要依赖相同的参与者就能决定信任的对象来完成共识。

dBFT,是基于持有权益比例来选出专门的记账人(记账节点),然后记账人之间通过拜占庭容错算法(即少数服从多数的投票机制)来达成共识,决定动态参与节点。dBFT可以容忍任何类型的错误,且专门的多个记账人使得每一个区块都有最终性、不会分叉。

PBET 共识机制是少数服从多数,根据信息在分布式网络中节点间互相交换后各节点列出所有得到的信息,一个节点代表一票,选择大多数的结果作为解决办法。PBET将容错量控制在全部节点数的1/3,即如只要有超过2/3的正常节点,整个系统便可正常运作。

智能合约最早在上世纪末就被提出,但直到近年随着区块链技术的发展逐步被社会大所熟悉,智能合约的概念具备承诺、协议、数字形式三大要素,因此能够将区块链的应用范围扩展至金融行业交易、支付、结算和清算的各个环节。智能台约是指当一个预先编好的条件被触发时,智能合约会立即执行相应的合同条款,其工作原理类似于计算机程序的if-then语句。

包含并且受EVM的代码控制的账户。合约不能通过私钥直接进行控制,除非被编译成EVM代码,一旦合约被发行就没有所有者。

以太坊虚拟机代码,以太坊的区块链可以包含的编程语言的代码。与帐户相关联EVM代码的EVM代码在每次消息被发到这个账户的时候被执行,并且具有读/写存储和自身发送消息的能力。

分片是区块容量的一种解决方案。通常情况下,每个节点和区块链网络都包含区块链的完整副本,分片是一种允许节点具有完整的区块链的部分副本的技术,以提高整体性能和稳定速度。

闪电网络是一种允许加密货币的交易即时发生和成本降低的技术,它使一般在比特币网络中需要等待区块确认的交易瞬间完成。闪电网络基于一个可扩展的微支付通道网络,通过序列到期可撤销合约 RSMC,使交易双方在区块链上的预先设置的支付通道进行的多次高频的双向交易瞬间完成。同时,它通过哈希时间锁定合约 HTLC 在没有直接点对点支付信道的交易双方之间连接一条由多个支付通道构成的支付路径,实现资金的转移。

雷电网络是一种以太坊链下扩容解决方案,它使得使用以太坊技术的加密货币能够即时和低成本交易。交易双方只要在链上存在交易信道,就能在链下根据被锁定的余额进行高频、双向的即时确认交易,将这样多个通道形成的支付路径构成"雷电网络"。

DAG 指有向无环图,是常用于计算机领域的数据结构。 DAG 具备独特的拓扑结构,经常被用于处理动态规划,导航中获得最短路径等场景中。在区块链领域,DAG 用来解决扩容性的问题,通过增加区块大小或者区块频率在网络中产生大量分叉,但是攻击者还是需要 51%的算力才能进行攻击。

隔离见证是一种技术,通过把占用大量存储空间的区块的数字签名重新放置到不同的记录(也称为隔离),使每个区块能进行更多的交易,以达到扩容的目的。区块链上不仅记载了每笔转账的具体信息,还包括了每笔交易的数字签名以核实交易的合法性。矿工在打包区块的时候需要用数字签名来验证每笔交易,确认无误之后才会将该笔交易记录在区块里。但对于用户不需要验证信息,且每个比特币记录大小被限制在 1兆字节(MB),每 10 分钟记录一次新的记录,所以通过隔离见证转移签名以扩大区块空间。

加密货币钱包形式多样,使用者可以通过钱包检查、储存、花费其持有的加密货币资产。

热钱包是一种网络连接的在线钱包,其原理是将私钥加密后存储在服务器上,当需要使用时再从服务器上下载下来并在浏览器端进行解密;由于联网的原因,个人的电子设备有可能被黑客植入木马用以盗取钱包文件、记录钱包的口令或是破解加密私钥,而钱包服务器也并非完全安全。总体而言,热钱包由于不受客户端限制,易用性强。

冷钱包是一种脱离网络连接的离线钱包,将私钥、交易数据存储于冷钱包将免疫网络黑客、木马病毒的袭击,并且避免出现丢币、盗币的情形。冷钱包是加密货币存储的最安全方式,但也不是绝对安全的,硬件损坏、丢失都可能造成加密货币的损失,因此需要做好密钥的备份。

硬件钱包是专门处理比特币的智能设备,通过硬件接口将加密货币的私钥存储于硬件设备中,用以保护加密货币免受网络黑客攻击,与离线钱包的概念较为相似

软件钱包是一个计算机程序设计的设备,具备排他性用以保护加密货币。钱包是与记录网络(区块链)交互的软件,可以让用户接收、存储和发送加密货币。

钱包是与记录网络(区块链)交互的软件,可以让用户接收、存储和发送加密货币。而核心钱包则包含整个区块链的记录,用户不仅可以接收、存储和发送加密货币外,还可以在上面进行编程。比特币交易被保存在数字记录中,被称为区块链,区块链由全球数千人维护,这个数字记录每天都在增长,并在2016 年超过100 千兆字节。

纸钱包是转移加密货币的一种方法,是将比特币交易所需要的公钥和私钥信息以纸质化的形式保存,只要进入到T纸钱包工具(Paper Wallet Tool)」页面,就能生成一组钱包地址,收到的人在支持的网站上输入纸上的密钥信息后就可以领取,通常纸钱包上还会印上二维码,用户通过扫描二维码能够直接将加密货币转移到钱包中快速交易。

本地钱包是指将私钥、交易数据存储于本地端,如电脑、手机或是其他本地设备中;是指密钥的存储位置,其概念独立于在线钱包、离线钱包。

分层确定性钱包是指通过创建一个父公钥生成所有的子公钥,并将主私钥以纸钱包的方式备份、离线存放在本地端,在安全、记账、备份、权限控制等方面相较于传统钱包具有优势。

完整的钱包客户端能够存储所有的交易历史记录,功能完备。

在区块链交易中。通过网页模式来浏览第三方服务器提供的服务,并藉由加密的私钥实现加密货币的交易。

轻量级的钱包客户端不保存交易副本,通过简易付款验证技术实现,交易需要向其他节点查询。

简易付款验证(SPV)是一种客户端的替代解决方案,用这种方案可以实现轻量级的钱包客户端,在客户端无需下载和管理整个数字记录,就可以确认自己的加密货币交易已经被正确记录。

加密货币是基于密码学的、不具备物理形式的货币,是数字货币的表现形式之一,在区块链中是指"一种基于 P2P网络、没有发行机构、总量基本确定、依据确定的发行制度和分配制度创建及交易、基于密码学及共识机制保证流通环节安全性地、具备一定编程性的数字货币。"而各国对于加密货币的定义不一而足,我国央行将加密货币定义为一种"虚拟商品"不具备货币属性;而在美国则根据不同部门有不同的定义,如∶财产、大宗商品、货币、虚拟货币等。

数字货币是一种不具备实体形式的、仅以数字形式存在的货币,在英语语境中与电子货币同义,而在中文语境下一般将电子货币解释为"电子化的法定货币",即"电子化的人民币"并与数字货币区别开来。数字货币具备与实体货币相似的性质,但允许在互联网上即时地、无地理限制地转让。数字货币包含虚拟货币、加密货币、电子货币等概念。